Задача 1.1.
Куртка стоит 250 р. На весенней распродаже ее можно купить на 33% дешевле. Сколько можно сэкономить, если купить куртку на распродаже?
Можно рассмотреть решение этой задачи двумя способами, в которых отражаются различные методы нахождения р% от некоторой величины.
1 способ: сначала найти 1%, а затем 33%.
2 способ: выразить 33% десятичной дробью и найти 0,33 данной величины.
Также можно предложить учащимся задание на перевод обыкновенных и десятичных дробей в проценты, так как это часто вызывает трудности.
Задача 1.2.
Даны квадраты (см. рис. 8), ответить на вопросы.
Какая часть квадрата заштрихована?
Выразите заштрихованную часть десятичной дробью.
Сколько процентов квадрата заштриховано?
Сколько процентов квадрата не заштриховано?
рис. 8
Далее можно предложить учащимся задачу, для решения которой нужно определить, что взять за 100%. Для более эффективного усвоения задачи можно использовать рисунок.
Задача 1.3.
В России 150 миллионов жителей. 70% всех жителей – городское население. Из них 23% – дети до 16 лет. Сколько детей до 16 лет среди городского населения?
Для решения задачи можно привести рисунок (см. рис. 9). Нужно обсудить с учащимися действия решения задачи.
Найти число городского населения из числа всех жителей России.
Из числа городских жителей найти число детей до 16 лет.
рис. 9
Рисунок (см. рис. 5) поможет школьникам решить задачу.
Ответ: 24,15 миллионов.
После подробного обсуждения задачи можно дать подобную задачу для самостоятельного решения.
Задача 1.4.
В библиотеке 98000 книг. Книги на русском языке составляют 78% всех книг, из них 5% – учебники. Сколько учебников на русском языке в библиотеке? (Ответ: 3822 книги).
Также в рамках занятия можно включить задачи на сравнение. Предлагая данные задачи, можно попросить учащихся высказать свои версии ответа, а затем приступить к решению.
Задача 1.5.
В магазин привезли 3 т картофеля и 900 кг помидоров. В первый день продали 30% всего картофеля и 45% всех помидор. Каких овощей продано больше и во сколько раз? (Ответ: картофеля продали больше, чем помидор в 2,2 раза).
Задача 1.6.
Сравнить числа 61% от 83 и 83% от числа 61.(Ответ: результаты равны.)
В завершении занятия учащимся можно предложить задачи на нахождение величины по известному количеству процентов.
Задача 1.7.
В коробке лежали лампочки, 4 из них разбились. Разбитые лампочки составили 2% от числа всех лампочек. Сколько всего лампочек в коробке?
Для решения задачи можно использовать алгебраический метод.
Пусть x лампочек в коробке. Тогда можно составить уравнение:
Ответ: 200 лампочек.
Затем следует сделать вывод о том, как находится величина по известному количеству его процентов, и дать задачу на закрепление.
Задача 1.8.
В школе 15 учеников учатся на «5». Это составляет 5% учащихся школы. Сколько всего учащихся в школе? (Ответ: 300 учащихся)
Домашнее задание.
Задача 1.
Дан квадрат клеток построить фигуру площадь, которой составляет:
а) 4%; б) 80%; в) 120% от площади квадрата.
Задача 2.
Из молока получается 22% сливок, из сливок получается 18% масла. Сколько масла получается из 10 кг молока?
Задача 3.
В первый час работы продавец продал 40 кг яблок. Это составило 16% от первоначального количества. Сколько килограммов яблок было у продавца первоначально?
Второе занятие следует начать с проверки домашнего задания и только после этого приступать к решению новых задач.
В начале занятия можно рассмотреть задачу об увеличении величины на несколько процентов и вспомнить метод ее решения.
Задача 2.1.
Когда цену товара увеличили на 30% ,он стал стоить 52 р. Определить первоначальную стоимость товара. (Ответ: 40 р.).
После подробного обсуждения задачи 2.1. следует предложить школьникам подобную задачу для самостоятельного решения.
Задача 2.2.
Цена товара сначала выросла на 20%, а затем снизилась на 15%, после чего товар стал стоить 102 р. Какова первоначальная стоимость товара? (Ответ: 100 р.)
После рассмотрения основных задач на проценты можно вместе с учащимися вывести общие формулы решения задач.
Еще по теме:
Применение новых информационных технологий в процессе обучения физике
К наглядным пособиям относят плоскостные изображения (таблицы, плакаты, рисунки и чертежи, диапозитивы, диа-, кино-, теле–фильмы) а также объемные пособия-модели, коллекции. Значение наглядных пособий и ТСО: 1. Используются для иллюстраций объяснения учителя, для лучшего восприятия учащимися различ ...
Методика работы по сенсорному развитию детей раннего
возраста
Как сказал И.М. Сеченов: "Корни мысли лежат у ребёнка в чувствовании", то есть прежде, чем мыслить, ребёнок начинает познавать окружающее с помощью своих органов чувств. У него развиваются различные сенсорные способности: видеть, слышать, различать. Для развития сенсорных способностей нео ...
Методологические и научно-педагогические основы экологического образования
Понимание методологических и научно-педагогических основ экологического образования невозможно без рассмотрения понятия и сущности образования. Анализ философской и педагогической литературы показал, что существует целый ряд подходов к определению сущности образования, связанных с разным пониманием ...