pedagogyreview
Информация о педагогике и образовании » Обучение решению задач на проценты в курсе алгебры основной школы » Методические рекомендации изложения темы «Проценты » по учебному комплекту под редакцией Г.В. Дорофеева для V – IX классов

Методические рекомендации изложения темы «Проценты » по учебному комплекту под редакцией Г.В. Дорофеева для V – IX классов

Страница 2

Второй этап в изучении процентов связывается с десятичными дробями. После изучения десятичных дробей и операций над ними нужно снова возвратится к понятию процента. Здесь предлагается два специальных пункта. В пункте «Главная задача на проценты» школьники учатся находить процент величины умножением на десятичную дробь. Прежде чем приступить к решению задач, нужно рассмотреть с учащимися правило и упражнения на перевод процентов в десятичную дробь.

«Чтобы выразить проценты десятичной дробью, нужно число, стоящее перед знаком %, разделить на 100 или, что то же самое, умножить на 0,01»

№ 596.[15] Выразить десятичной дробью:

а) 2,5%, 18,3%, 1,6%, 54,5%;

б) 0,1%, 0,5%, 0,3%, 0,7%;

в) 120%, 137%, 240%, 350%.

Предлагается рассмотреть разные способы решения той или иной задачи.

Пример 2. Мужская рубашка стоила 8200 р. Сколько она стала стоить, когда ее цена увеличилась на 35%?

Так как 35% – это 0,35, то надо найти 0,35 от 8200 р.:

(р.) (на столько повысилась цена).

Теперь найдем новую цену:

8200+2870=11070 (р.).

Можно рассуждать иначе. Старая цена составляет 100%, а новая – на 35% больше, т.е. она составляет 135%. Так как 135% – это 135:100=1,35, то цена увеличилась в 1,35 раза.

Имеем: (р.).

Также учащиеся знакомятся с задачами типа К2. Но авторы рассматривают эти задачи в рамках упражнений группы Б (более сложных).

№ 606. В первый час работы продавец продал 40 кг яблок. Это составило 16% от первоначального количества яблок. Сколько килограммов яблок было у продавца первоначально?

В пункте «Выражение долей в процентах» центральной является задача об определении того, сколько процентов одна величина составляет от другой.

619. В избирательном округе 2500 избирателей. В голосовании приняли участие 1300 избирателей. Какой процент избирателей участвовал в голосовании?

Здесь принят подход, в соответствии с которым сначала находят, какую часть одна величина составляет от другой, выражают ее при необходимости десятичной дробью, а затем – в процентах.

Не следует торопиться приступать к решению новых задач. В учебнике предлагается система упражнений, в которых предлагается выразить дробь (обыкновенную или десятичную) в процентах.

№ 615. Прочитайте предложение, выразив дробь в процентах:

а) бензином заполнили бака;

б) учащихся школы едут в школу на автобусе;

в) масса сушеной вишни составляет массы свежей вишни;

г) магазин продал привезенного сахара.

Одна из особенностей вычислительной линии курса состоит в формировании умений выполнять прикидку или оценку результата вычислений. При изучении процентов эта работа, естественно, продолжается. Учащимся предлагаются задачи из повседневной практики, в которых требуется найти приближенно с помощью прикидки процент от заданной величины. Для этого достаточно заменить данные другими числами, близкими к ним и удобными для расчетов. Так, если требуется прикинуть, чему равно 19% от какой-либо величины, то находят 20% этой величины, т.е. ее пятую часть.

№ 595. Перед Новым годом магазин снизил цены на товары на 25%. На сколько примерно рублей понизилась цена товара, если до снижения она составляла 799 руб.? 1980 руб.? 11890 руб.?

№ 629. Часть фигуры заштрихована (см. рис 4.). Определите, какой примерно процент фигуры заштрихован, выбрав наиболее подходящий ответ из данных.

Рис. 4

Третий этап в изучении процентов отнесен к 7классу. В силу возрастных возможностей семиклассников и уже накопленного ими опыта работы с процентами учащимся становятся доступными многие вопросы из тех, что традиционно не рассматривались со всем классом, а изучались лишь в качестве дополнительных в работе с сильными учениками. Учащиеся уже знакомы со всеми основными видами задач, теперь они осваивают другие способы их решения, которые были им неизвестны.

В первой главе учебника выделен пункт «Решение задач на проценты», в котором помещен материал, позволяющий вспомнить сведения из шестого класса и продвинуться в решении задач. Теперь есть возможность рассмотреть более сложные в техническом отношении задачи. Они требуют достаточно прочного навыка представления процентов дробью и наоборот, умение находить процент от величины, понимание того, какая из величин, участвующих в задаче, принимается за 100%. Поэтому в начале теоретической части пункта рассматриваются приемы, с помощью которых десятичная дробь выражается в процентах и наоборот; здесь специально выделяется вопрос о «маленьких» (меньше 1%) и «больших» (больше 100%) процентах, как наиболее трудный для усвоения.

Страницы: 1 2 3 4 5 6 7

Еще по теме:

Значение игры в системе обучения
Как показывает опыт работы, необходимым условием эффективности развития художественного творчества детей является введение в структуру уроков изобразительного искусства отдельных игровых элементов и художественно-дидактических игр и использование элементов соревнования. Значение этого условия предо ...

Анализ программ и учебников, содержащих компоненты полового воспитания
Проблема полового воспитания в школе усугубляется отсутствием четкой сформулированной программы, определившей бы принципы и содержание полового воспитания в школе. И. Борисов составил типологию имеющихся на сегодняшний день различных программ полового воспитания: 1. «Государственная» (федеральная) ...

Оценка достижения предметных планируемых результатов по синтаксису русского языка
Целью контрольного этапа эксперимента стала оценка достижения предметных планируемых результатов по освоению младшими школьниками синтаксиса русского языка. На контрольном этапе эксперимента учащимися 3-х классов была выполнена вторая проверочная работа по синтаксису русского языка, которая содержа ...

Категории

© 2019 Copyright www.libraryedu.ru